
FFI

Igor Stasenko

RMoD Team
INRIA Lille Nord-Europe

INRIA-CEA-EDF School  Deep into Smalltalk
March 2011



RMod

Outline

what is FFI?
how it is done?
when do you need it?
why not writing plugin instead?
security?
existing implementations

2



RMod

What is FFI?

FFI stands for Foreign Function Interface
helps connecting our wonderful universe with outer 
world (which in most cases are C ;)
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How it is done?
• Dynamic libraries (.dll, .so , .dylib) have to follow conventions 

(known as ABI), so applications could use them.
• Therefore, by knowing these conventions and honoring 

them, applications can use dynamic libraries.
• FFI is a layer that provides that.
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When do you need it?

• When there is no other way to access certain functionality

• Which is often happens because VM can’t do everything you 
want :)
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Why not writing plugin instead?

• In a longer perspective, well written plugin could be 
better. 
• But plugins are harder to develop
• You have to build own version of VM
• For prototyping and extreme style development FFI is 

winner for sure.
• I believe that statically generated code is counting its 

last days on Earth’s computers :)
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Security concerns?
• Lets face it: Smalltalk in general is a wide open architecture 

and therefore there are little or no security.

• Does using FFI makes malicious code more dangerous than 
malicious smalltalk one?

• Let us grow up: Jailing kid in a room with no way to get out 
doesn’t guarantees that kid won’t become a criminal later. 

• Developers are not kids. They can decide for themselves.
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Existing implementations

• FFIPlugin (source.squeak.org/FFI)

• Alien (squeaksource.com/Alien)

• NativeBoost (squeaksource.com/NativeBoost)
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FFIPlugin

apiGetEnvironmentVariable: lpName with: lpBuffer with: nSize
   

<apicall: ulong 'GetEnvironmentVariableA' (char* byte* ulong) 
module: 'kernel32.dll'>

   ^self externalCallFailed

Parser parses a definition to ExternalLibraryFunction instance 
and placing it to method’s literals.

A special primitive #120 (primitiveExternalCall) set for 
a method, which knows how to handle the 
ExternalLibraryFunction
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Callout spec
<apicall: ulong 'GetEnvironmentVariableA' 

(char* byte* ulong) module: 'kernel32.dll'>

Three parts
 - apicall: or cdecl:  denotes call convention to use.

 - <returnType> <name> (<arg types>...)  function 
prototype.
a function name could be string or number and used for 
looking up in an external library. 

 - module: a named of external library to search for given 
function
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Call conventions

apicall AKA stdcall AKA pascal call:
- pushing arguments from right to left
- callee cleans the stack
- mostly used by Windows OS system libraries

cdecl AKA C call convention (__cdecl__).
- pushing arguments from right to left
- caller cleans the stack after return
- a default call convention used by C compilers

http://en.wikipedia.org/wiki/X86_calling_conventions#cdecl
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Basic types
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 8)

FFI types matching the primitive types of C
see ExternalType>>initializeAtomicTypes
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Pointer types*
• A <name>* denotes a pointer type.

• You can use pass instances of variableByte or variableWord 
classes (like ByteArray, WordArray, FloatArray, String-s) to 
pass them as a pointer argument. 

• The pointer to first indexable field is pushed on stack.

• A pointer value returned for return type.
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Struct types

struct abc {
int a;
char b;
float c;

};

ExternalStructure subclass: #ABCStruct
	

 instanceVariableNames: ''
	

 classVariableNames: ''
	

 poolDictionaries: ''
	

 category: 'Example'

ABCStruct class>>fields
	

 "define fields"
	

 ^#(
	

 	

 (a 'int')
	

 	

 (b 'char')
	

 	

 (c 'float'))
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Making calls programmatically

fn := ExternalLibraryFunction new.

... fill argument types, module etc...

fn invokeWithArguments: { un. deux. trois. }
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Example

ExternalObject subclass: #MacOSShell
	

 instanceVariableNames: ''
	

 classVariableNames: ''
	

 poolDictionaries: ''
	

 category: 'FFI-MacOS-Examples'

getenv: aString
	

 <apicall: char* 'getenv' (char*) module: 'libSystem.dylib'>
	

 self externalCallFailed
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I want More!

• Callbacks

• Threaded calls
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