
FFI

Igor Stasenko

RMoD Team
INRIA Lille Nord-Europe

INRIA-CEA-EDF School Deep into Smalltalk
March 2011

RMod

Outline

what is FFI?
how it is done?
when do you need it?
why not writing plugin instead?
security?
existing implementations

2

RMod

What is FFI?

FFI stands for Foreign Function Interface
helps connecting our wonderful universe with outer
world (which in most cases are C ;)

3

RMod
How it is done?
• Dynamic libraries (.dll, .so , .dylib) have to follow conventions

(known as ABI), so applications could use them.
• Therefore, by knowing these conventions and honoring

them, applications can use dynamic libraries.
• FFI is a layer that provides that.

4

RMod
When do you need it?

• When there is no other way to access certain functionality

• Which is often happens because VM can’t do everything you
want :)

5

RMod
Why not writing plugin instead?

• In a longer perspective, well written plugin could be
better.
• But plugins are harder to develop
• You have to build own version of VM
• For prototyping and extreme style development FFI is

winner for sure.
• I believe that statically generated code is counting its

last days on Earth’s computers :)

6

RMod
Security concerns?
• Lets face it: Smalltalk in general is a wide open architecture

and therefore there are little or no security.

• Does using FFI makes malicious code more dangerous than
malicious smalltalk one?

• Let us grow up: Jailing kid in a room with no way to get out
doesn’t guarantees that kid won’t become a criminal later.

• Developers are not kids. They can decide for themselves.

7

RMod
Existing implementations

• FFIPlugin (source.squeak.org/FFI)

• Alien (squeaksource.com/Alien)

• NativeBoost (squeaksource.com/NativeBoost)

8

RMod
FFIPlugin

apiGetEnvironmentVariable: lpName with: lpBuffer with: nSize

<apicall: ulong 'GetEnvironmentVariableA' (char* byte* ulong)
module: 'kernel32.dll'>

 ^self externalCallFailed

Parser parses a definition to ExternalLibraryFunction instance
and placing it to method’s literals.

A special primitive #120 (primitiveExternalCall) set for
a method, which knows how to handle the
ExternalLibraryFunction

9

RMod

Callout spec
<apicall: ulong 'GetEnvironmentVariableA'

(char* byte* ulong) module: 'kernel32.dll'>

Three parts
 - apicall: or cdecl: denotes call convention to use.

 - <returnType> <name> (<arg types>...) function
prototype.
a function name could be string or number and used for
looking up in an external library.

 - module: a named of external library to search for given
function

10

RMod

Call conventions

apicall AKA stdcall AKA pascal call:
- pushing arguments from right to left
- callee cleans the stack
- mostly used by Windows OS system libraries

cdecl AKA C call convention (__cdecl__).
- pushing arguments from right to left
- caller cleans the stack after return
- a default call convention used by C compilers

http://en.wikipedia.org/wiki/X86_calling_conventions#cdecl

11

RMod
Basic types

	

 	

 "name	

 	

 atomic id	

	

 byte size"
	

 	

 ('void' 	

 	

 0 	

 	

 	

 	

 0)
	

 	

 ('bool' 	

 	

 1 	

 	

 	

 	

 1)
	

 	

 ('byte' 	

 	

 2 	

 	

 	

 	

 1)
	

 	

 ('sbyte' 	

 3 	

 	

 	

 	

 1)
	

 	

 ('ushort' 	

 4 	

 	

 	

 	

 2)
	

 	

 ('short' 	

 	

 5 	

 	

 	

 	

 2)
	

 	

 ('ulong' 	

 6 	

 	

 	

 	

 4)
	

 	

 ('long' 	

 	

 7 	

 	

 	

 	

 4)
	

 	

 ('ulonglong' 8 	

 	

 	

 	

 8)
	

 	

 ('longlong' 	

 9 	

 	

 	

 	

 8)
	

 	

 ('char' 	

 	

 10 	

 	

 	

 	

 1)
	

 	

 ('schar' 	

 11 	

	

 	

 	

 1)
	

 	

 ('float' 	

 	

 12 	

 	

 	

 	

 4)
	

 	

 ('double' 	

 13 	

 	

 	

 	

 8)

FFI types matching the primitive types of C
see ExternalType>>initializeAtomicTypes

12

RMod
Pointer types*
• A <name>* denotes a pointer type.

• You can use pass instances of variableByte or variableWord
classes (like ByteArray, WordArray, FloatArray, String-s) to
pass them as a pointer argument.

• The pointer to first indexable field is pushed on stack.

• A pointer value returned for return type.

13

RMod
Struct types

struct abc {
int a;
char b;
float c;

};

ExternalStructure subclass: #ABCStruct
	

 instanceVariableNames: ''
	

 classVariableNames: ''
	

 poolDictionaries: ''
	

 category: 'Example'

ABCStruct class>>fields
	

 "define fields"
	

 ^#(
	

 	

 (a 'int')
	

 	

 (b 'char')
	

 	

 (c 'float'))

14

RMod
Making calls programmatically

fn := ExternalLibraryFunction new.

... fill argument types, module etc...

fn invokeWithArguments: { un. deux. trois. }

15

RMod
Example

ExternalObject subclass: #MacOSShell
	

 instanceVariableNames: ''
	

 classVariableNames: ''
	

 poolDictionaries: ''
	

 category: 'FFI-MacOS-Examples'

getenv: aString
	

 <apicall: char* 'getenv' (char*) module: 'libSystem.dylib'>
	

 self externalCallFailed

16

RMod
I want More!

• Callbacks

• Threaded calls

17

